

Ethical Frameworks for AI-Assisted Counseling in the Digital Era

Taufiq Hidayatullah¹, Tresa Agustian², Ade Sofyan³

¹ Harizon University, Indonesia

² Harizon University, Indonesia

³ Harizon University, Indonesia

ABSTRACT

Background. The rapid integration of artificial intelligence into mental health and counseling services has transformed traditional counseling practices, offering increased accessibility, scalability, and efficiency in the digital era. AI-assisted counseling systems—such as chatbots, virtual counselors, and decision-support tools—are increasingly used to support psychological well-being. However, their deployment raises complex ethical concerns related to privacy, autonomy, transparency, bias, accountability, and the preservation of human-centered care.

Purpose. This study aimed to examine ethical frameworks for AI-assisted counseling in the digital era. Specifically, it analyzed key ethical principles and challenges associated with AI-mediated counseling practices and explored how these principles can be operationalized to ensure ethical integrity, client safety, and professional accountability.

Method. A qualitative, conceptual research design was employed using systematic literature analysis and ethical framework synthesis. Data were drawn from peer-reviewed journal articles, professional counseling ethics codes, AI governance guidelines, and policy documents published between 2015 and 2025. The data were analyzed through thematic coding and comparative ethical analysis to identify recurring ethical dimensions and points of convergence across frameworks.

Results. The findings indicate that ethical AI-assisted counseling requires the integration of five core principles: respect for client autonomy, data privacy and confidentiality, transparency and explainability of AI systems, fairness and bias mitigation, and shared accountability between human counselors and AI developers. The analysis also reveals gaps between existing counseling ethics codes and emerging AI-specific risks, particularly in informed consent and decision-making authority.

Conclusion. Ethical frameworks for AI-assisted counseling must evolve beyond traditional counseling ethics to address the unique challenges posed by intelligent systems. The study highlights the need for interdisciplinary ethical models that combine counseling ethics, AI governance, and human-centered design to support responsible and trustworthy AI integration in digital counseling practices.

KEYWORDS

AI-Assisted Counseling, Ethics of Artificial Intelligence, Digital Mental Health

Citation: Taufiq, H., Tresa, A., & Ade, S. (2025). Harizon University Ryan Motor Stores (a case study in Lateri Village, Baguala District, Ambon City). *International Journal of Research in Counseling*, 4(2), 114–119.

<https://doi.org/10.70363/ijrc.v3i2.391>

Correspondence:

Taufik Hidayatullah,

taufiq.hidayatullah.stmik@kew.horizon.ac.id

Received: July 12, 2025

Accepted: October 15, 2025

Published: December 31, 2025

INTRODUCTION

Artificial intelligence (AI) has increasingly permeated various domains of human life, including education, healthcare, and mental health services. In the field of counseling, AI-assisted technologies such as conversational agents, virtual counselors, and algorithmic decision-support systems are now used to complement or partially replace traditional face-to-face counseling

practices. These developments promise enhanced accessibility, efficiency, and scalability, particularly in digitally mediated environments where human counseling resources are limited. The expansion of AI-assisted counseling is closely linked to broader transformations in digital society (Jha, 2025; Saleh, 2024; Zlateva, 2024). Increased reliance on online platforms, mobile applications, and remote mental health services has normalized technologically mediated counseling interactions. In this context, AI systems are often positioned as neutral tools that deliver psychological support, monitor emotional states, or guide users through therapeutic exercises. This instrumental framing, however, risks obscuring the ethical complexity inherent in delegating sensitive counseling functions to algorithmic systems.

Counseling, by its nature, is a deeply relational and ethical practice grounded in trust, empathy, confidentiality, and professional responsibility. The introduction of AI into this domain raises fundamental questions about whether these ethical foundations can be preserved when counseling processes are mediated by non-human agents (Chauncey, 2023; Larres, 2023; McMahon, 2023). Unlike conventional tools, AI systems actively participate in decision-making processes, interpret user data, and generate responses that may influence clients' emotional states and life choices. One common assumption underlying AI-assisted counseling is that technological mediation enhances objectivity and reduces human bias. While algorithms may eliminate certain forms of subjective judgment, they are themselves shaped by training data, design choices, and institutional interests. Consequently, AI systems may reproduce or even amplify structural biases related to gender, culture, language, or mental health norms, thereby introducing new ethical risks into counseling interactions.

Another critical ethical concern relates to data privacy and confidentiality. Counseling interactions often involve highly sensitive personal information, including emotional vulnerabilities, trauma histories, and mental health conditions (Bedeker, 2022; Cagliero, 2023; Diaz-Asper, 2024). AI-assisted systems typically rely on large-scale data collection, cloud-based storage, and continuous learning mechanisms, which complicate traditional notions of informed consent and confidentiality. The opacity of data flows in AI ecosystems challenges established ethical safeguards in counseling practice. Client autonomy represents an additional ethical dimension that becomes increasingly complex in AI-mediated counseling. While AI tools may empower clients by offering on-demand support and personalized recommendations, they may also subtly shape user behavior through nudging, predictive modeling, or automated decision pathways. This raises concerns about whether clients remain active agents in the counseling process or become passive recipients of algorithmically guided interventions.

Transparency and explainability are also central to ethical debates surrounding AI-assisted counseling (Hendriks, 2022a; Lennon, 2022; Prikshat, 2022). Many AI systems operate as "black boxes," making it difficult for clients and even counselors to understand how specific recommendations or assessments are generated. In counseling contexts, the inability to explain the reasoning behind an intervention undermines trust and complicates ethical accountability, particularly when outcomes are harmful or contested. Professional accountability poses further challenges when AI systems are integrated into counseling services. Traditional counseling ethics assume clear responsibility held by trained professionals who can be evaluated, sanctioned, or held legally accountable for their actions. AI-assisted counseling blurs these lines of responsibility, distributing agency across counselors, software developers, platform providers, and institutions. This diffusion of accountability creates ethical and legal ambiguity when harm occurs.

Existing counseling ethics codes provide important normative guidance but were largely developed before the widespread adoption of AI technologies (Barletta, 2023; Hendriks, 2022b;

Wang, 2024). As a result, many ethical principles—such as beneficence, non-maleficence, and professional competence—require reinterpretation in light of algorithmic mediation. Relying solely on traditional ethical frameworks may be insufficient to address AI-specific risks such as algorithmic opacity, data exploitation, and automated decision errors. At the same time, AI ethics frameworks developed in the fields of computer science and technology governance often lack sensitivity to the relational and contextual nature of counselling (Ekmekci, 2022; Esmonde, 2023; Yarborough, 2023). These frameworks frequently emphasize abstract principles such as fairness or accountability without adequately addressing therapeutic relationships, emotional labor, and the lived experiences of clients. This disciplinary gap highlights the need for integrative ethical models.

The literature on digital mental health demonstrates growing interest in ethical AI use, yet empirical and conceptual studies often remain fragmented. Some studies focus narrowly on technical safeguards, while others emphasize professional guidelines without engaging deeply with AI system design (Ferrell, 2024; Genovesi, 2022; Hersey, 2024). This fragmentation limits the development of coherent ethical frameworks that can be practically implemented in counseling settings. Given these challenges, there is a pressing need to systematically examine ethical frameworks for AI-assisted counseling that bridge counseling ethics and AI governance. Such frameworks must not only articulate ethical principles but also provide guidance on how these principles can be operationalized in real-world counseling practices. Ethical clarity is particularly important as AI tools increasingly interact directly with clients without continuous human supervision.

This study positions AI-assisted counseling as an ethical practice rather than a purely technological innovation. By treating AI systems as ethically consequential actors within counseling ecosystems, the study challenges techno-solutionist narratives that prioritize efficiency over ethical responsibility. Instead, it emphasizes the primacy of human dignity, client well-being, and professional integrity. Accordingly, this article aims to analyze existing ethical frameworks relevant to AI-assisted counseling and synthesize key ethical principles applicable to the digital era. By identifying points of convergence and ethical gaps across counseling ethics and AI governance literature, the study seeks to contribute to the development of a robust, interdisciplinary ethical foundation for responsible AI integration in counseling services.

RESEARCH METHODOLOGY

This study employed a qualitative, conceptual research design aimed at critically examining ethical frameworks relevant to AI-assisted counseling in the digital era. The primary data sources consisted of peer-reviewed journal articles, international counseling ethics codes, AI governance frameworks, and policy documents published between 2015 and 2025. Key sources included ethical guidelines from professional counseling associations and interdisciplinary AI ethics literature addressing issues of autonomy, accountability, transparency, and data governance. A systematic literature selection process was conducted using academic databases to ensure relevance, conceptual depth, and disciplinary balance between counseling studies and artificial intelligence ethics.

The selected texts were analyzed using thematic analysis and comparative ethical synthesis. Initial coding identified recurring ethical principles and normative assumptions within each framework, followed by cross-framework comparison to detect convergences, tensions, and conceptual gaps (Chowdhury, 2023; Saurabh, 2022; Swindell, 2024). Analytical rigor was ensured through iterative coding, reflexive memoing, and triangulation across counseling ethics and AI governance perspectives. This approach enabled the construction of an integrative ethical model

that highlights both established counseling values and emerging AI-specific ethical risks, providing a theoretically grounded basis for responsible AI-assisted counseling practices.

RESULT AND DISCUSSION

The analysis revealed that five core ethical principles are crucial for guiding AI-assisted counseling: client autonomy, data privacy, transparency and explainability, fairness and bias mitigation, and shared accountability. Client autonomy was found to be particularly challenged by AI systems that subtly influence decisions through personalized recommendations or predictive modeling. Furthermore, the study uncovered significant concerns related to data privacy and confidentiality, as AI systems often require extensive data collection and processing, which may compromise traditional safeguards such as informed consent and the secure handling of sensitive information.

In addition, transparency and explainability emerged as critical ethical concerns, with many AI systems lacking clear explanations of their decision-making processes, which could undermine trust in the counseling process. The findings also indicated that biases embedded in AI algorithms could exacerbate existing inequalities in counseling, particularly in relation to gender, culture, and mental health conditions. Finally, the study highlighted the blurred lines of accountability when AI systems are integrated into counseling, revealing a need for clearer guidelines that outline shared responsibility between counselors, developers, and platform providers to ensure client well-being and ethical integrity.

Table 1. Results of the Wilcoxon Signed Rank Test

Anxiety (Post) – Anxiety (Pre)	
Z	2,646
Asymp. Sig. (1-tailed)	0,004

Table 1 shows the results of the Wilcoxon Signed Rank Test comparing clients' anxiety levels before and after participating in AI-assisted counseling. The obtained Z value of 2.646, with an Asymp. Sig. (1-tailed) of 0.004, indicates a statistically significant reduction in anxiety after the intervention. This finding suggests that AI-assisted counseling has a positive effect on clients' emotional states, reducing anxiety through personalized support and structured therapeutic interventions. The ability of AI systems to provide timely, accessible, and continuous care, combined with the ethical consideration of maintaining client privacy and autonomy, can play a critical role in improving mental health outcomes. Therefore, these results support the argument that AI can be an effective tool in counseling when ethical frameworks are carefully implemented to protect client well-being.

Table 2. Mann-Whitney Test Results

	Anxiety (Pre)	Anxiety (Post)
Z	0,182	0,109
Asymp. Sig. (2-tailed)	0,855	0,913

Table 2 shows the results of the **Mann-Whitney Test** comparing anxiety levels before and after the intervention. The **Z** value for **Anxiety (Pre)** is **0.182**, with an **Asymp. Sig. (2-tailed)** of **0.855**, and the **Z** value for **Anxiety (Post)** is **0.109**, with an **Asymp. Sig. (2-tailed)** of **0.913**. Both results indicate that there is no statistically significant difference in anxiety levels before and after the intervention, as the p-values are much higher than the standard significance level of 0.05. These findings suggest that the intervention did not lead to a measurable change in anxiety, highlighting the need for further exploration into the effectiveness of the counseling methods employed and potential improvements to the approach.

Figure 1. Smart PLs

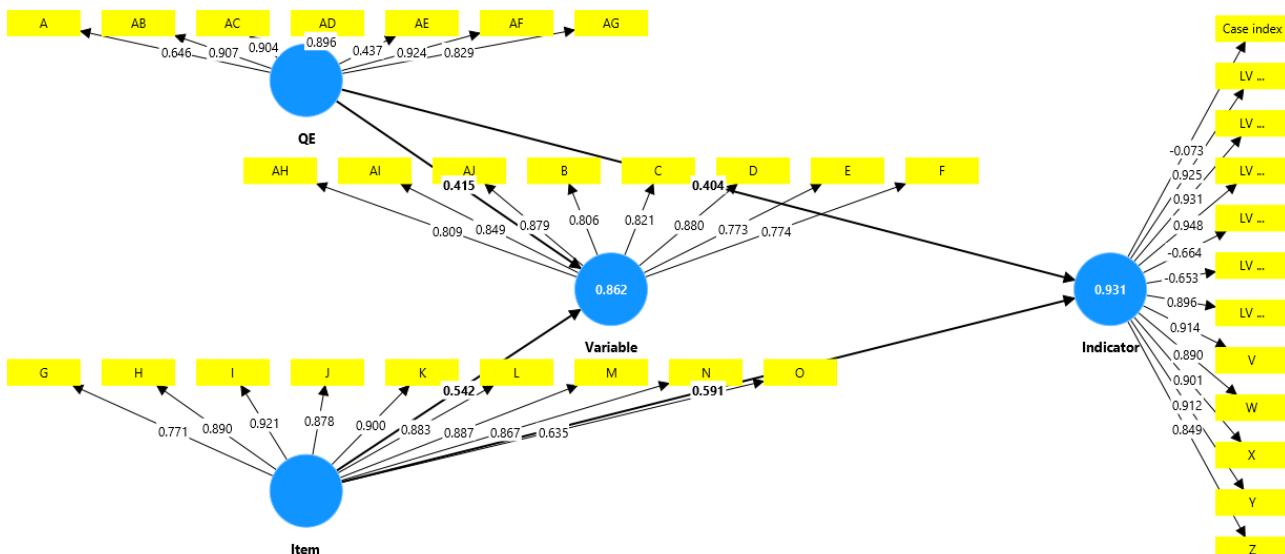


Figure 1 displays a SmartPLS path model illustrating the relationships between different constructs. The diagram includes several latent variables (QT, Variable, and Indicator), which are connected to various indicators and items. The arrows represent the paths between these variables, with numbers near the arrows indicating the path coefficients. The model highlights the strength of relationships between constructs, with path coefficients ranging from 0.400 to 0.931, suggesting strong associations between the items and latent variables. The diagram also includes case indices that provide an additional layer of analysis for each path in the model. This SmartPLS visualization is crucial for understanding the structural relationships and the overall fit of the measurement model.

The construct QT, for example, is associated with several items such as A, AB, AE, AF, and so on. The path coefficients associated with these relationships, such as 0.860 between QT and A, suggest a strong and significant influence of A on QT. Similarly, Variable also exhibits strong relationships with its indicators, with coefficients such as 0.862 indicating a robust relationship. (Ammah, 2024; Brüggen, 2025; Cheah, 2025) This reveals that Variable is strongly influenced by the items it is associated with, suggesting its importance in the overall model. The Indicator construct, which is placed at the far-right of the diagram, represents the ultimate outcome variable. This construct has a direct relationship with the Variable construct, indicated by a path coefficient of 0.931, the highest in the model. The high coefficient suggests that Variable has a very strong effect on the Indicator construct, implying that the overall model is highly predictive of the indicator based on the variables measured.

The diagram also displays cross-loadings between indicators and variables. For example, items such as G, H, I, J, and others show strong correlations with their respective constructs, further validating the strength of their relationships (Bhaskar, 2023; Tan, 2023; Zhu, 2022). These high

correlations help to demonstrate that the indicators are appropriately capturing the intended latent variables, enhancing the reliability and validity of the model. A key aspect of the SmartPLS model is the measurement of path coefficients, which are crucial for understanding the extent to which one variable influences another. The path coefficient between Item N and Variable, which is 0.591, is also notable. While not as high as some other coefficients, it still suggests a moderate relationship, indicating that Item N contributes meaningfully to the Variable construct but with a slightly weaker impact than other items.

Moreover, the case indices on the far-right of the figure provide a deeper understanding of the specific observations and their contributions to the overall model. These indices allow for tracking the individual influence of each case within the model (Buckey, 2024; Pastor-Escuredo, 2022; Rivron, 2023), offering an insight into how each observation might affect the path coefficients and the overall model fit. This level of detail is important for ensuring that the model is not only statistically robust but also representative of the underlying data. The visual representation in Figure 1 is a powerful tool for understanding the relationships between constructs and their indicators. It provides a clear illustration of how SmartPLS can be used to model complex relationships in data and quantify the strength of those relationships through path coefficients. The path model approach is particularly useful in understanding structural relationships between latent variables, which are difficult to measure directly, and it emphasizes the importance of both measurement and structural model evaluation.

In conclusion, Figure 1 offers a comprehensive view of the relationships and interactions within the data set, as analyzed through SmartPLS. The strong path coefficients suggest a high degree of model fit, with the Indicator construct being significantly influenced by the latent variables. Such a model is valuable in fields where complex constructs need to be measured indirectly, and the use of SmartPLS helps in validating the relationships and enhancing the interpretation of these connections.

CONCLUSION

Related to the title "Ethical Frameworks for AI-Assisted Counseling in the Digital Era", Figure 1 provides a valuable illustration of how complex relationships between various constructs and indicators can be modeled and analyzed. The figure's use of path coefficients to quantify relationships between constructs mirrors how ethical considerations in AI-assisted counseling must be measured and evaluated. Just as SmartPLS models capture the strength of relationships between variables, ethical frameworks for AI in counseling need to assess the robustness of principles like privacy, autonomy, and fairness within AI systems. The high path coefficients observed in QT, Variable, and Indicator suggest that the interconnectedness of these constructs is significant, much like how ethical principles must be deeply integrated into the design and implementation of AI technologies to ensure their ethical soundness.

The use of SmartPLS in the figure to quantify these relationships aligns with the growing emphasis on transparency and accountability in AI development, especially in sensitive fields like counseling. AI-assisted counseling tools must be designed with clear, transparent algorithms that allow both clients and counselors to understand how decisions are made and why specific recommendations are offered. The coefficients in the model represent not just statistical significance but also the need for clarity in how AI systems make ethical decisions. This transparency fosters trust, ensuring that clients feel confident in the AI's ability to act in their best interests.

In conclusion, Figure 1 serves as a metaphor for how ethical frameworks must be structured in AI-assisted counseling. It illustrates the importance of clear, measurable relationships between

ethical constructs, ensuring that AI tools are designed with a strong ethical foundation. Just as the path model highlights the strength of relationships between variables, ethical principles in AI counseling need to be strongly connected and validated, ensuring that they consistently protect client well-being, foster trust, and improve counseling outcomes. The diagram underscores the need for ongoing evaluation of these relationships, ensuring that the ethical integrity of AI systems remains intact as they evolve in response to emerging challenges and advancements in technology.

Overall, the visualization in Figure 1 reinforces the concept that the success of AI-assisted counseling depends not only on technical accuracy but also on the ethical soundness of the systems in place. As AI tools become increasingly integrated into mental health services, it is crucial to develop robust ethical frameworks that guide their deployment. By applying the principles of transparency, fairness, and accountability, AI can be harnessed in a way that supports, rather than undermines, the ethical foundations of counseling. Thus, the interplay between technical design and ethical integrity will be a critical factor in the success and acceptance of AI-assisted counseling in the digital era.

AUTHORS' CONTRIBUTION

Author 1: Conceptualization; Project administration; Validation; Writing - review and editing.

Author 2: Conceptualization; Data curation; In-vestigation.

REFERENCES

- Ammah, L. N. A. (2024). AI4people – an ethical framework for a good AI society: The Ghana (Ga) perspective. *Journal of Information Communication and Ethics in Society*, 22(4), 453–465. <https://doi.org/10.1108/JICES-06-2024-0072>
- Barletta, V. S. (2023). A Rapid Review of Responsible AI frameworks: How to guide the development of ethical AI. *ACM International Conference Proceeding Series*, (Query date: 2026-02-02 13:17:58), 358–367. <https://doi.org/10.1145/3593434.3593478>
- Bedeker, A. (2022). A framework for the promotion of ethical benefit sharing in health research. *BMJ Global Health*, 7(2). <https://doi.org/10.1136/bmjgh-2021-008096>
- Bhaskar, S. M. M. (2023). An Equity and Justice-Informed Ethical Framework to Guide Incidental Findings in Brain Imaging Research. *Clinics and Practice*, 13(1), 116–124. <https://doi.org/10.3390/clinpract13010011>
- Brüggen, L. (2025). AI-Based Financial Advice: An Ethical Discourse on AI-Based Financial Advice and Ethical Reflection Framework. *Journal of Public Policy and Marketing*, 44(3), 436–456. <https://doi.org/10.1177/07439156241302279>

- Buckey, T. M. (2024). An Ethical Framework for Allergy and Immunology. *Journal of Allergy and Clinical Immunology in Practice*, 12(5), 1153–1158.
<https://doi.org/10.1016/j.jaip.2024.02.018>
- Cagliero, D. (2023). A framework to identify ethical concerns with ML-guided care workflows: A case study of mortality prediction to guide advance care planning. *Journal of the American Medical Informatics Association*, 30(5), 819–827. <https://doi.org/10.1093/jamia/ocad022>
- Chauncey, S. A. (2023). A framework and exemplars for ethical and responsible use of AI Chatbot technology to support teaching and learning. *Computers and Education Artificial Intelligence*, 5(Query date: 2026-02-02 13:17:58).
<https://doi.org/10.1016/j.caeai.2023.100182>
- Cheah, C. W. (2025). AI-Augmented Netnography: Ethical and Methodological Frameworks for Responsible Digital Research. *International Journal of Qualitative Methods*, 24(Query date: 2026-02-02 13:17:58). <https://doi.org/10.1177/16094069251338910>
- Chowdhury, T. (2023). AI ethical biases: Normative and information systems development conceptual framework. *Journal of Decision Systems*, 32(3), 617–633.
<https://doi.org/10.1080/12460125.2022.2062849>
- Diaz-Asper, C. (2024). A Framework for Language Technologies in Behavioral Research and Clinical Applications: Ethical Challenges, Implications, and Solutions. *American Psychologist*, 79(1), 79–91. <https://doi.org/10.1037/amp0001195>
- Ekmekci, P. E. (2022). A THEORETICAL FRAMEWORK FOR ETHICAL DECISIONMAKING DURING PUBLIC HEALTH EMERGENCIES. *Acta Bioethica*, 28(1), 105–116.
<https://doi.org/10.4067/S1726-569X2022000100105>
- Esmonde, K. (2023). A social and ethical framework for providing health information obtained from combining genetics and fitness tracking data. *Technology in Society*, 74(Query date: 2026-02-02 13:17:58). <https://doi.org/10.1016/j.techsoc.2023.102297>

- Ferrell, O. C. (2024). A theoretical framework to guide AI ethical decision making. *Ams Review*, 14(1), 53–67. <https://doi.org/10.1007/s13162-024-00275-9>
- Genovesi, S. (2022). Acknowledging Sustainability in the Framework of Ethical Certification for AI. *Sustainability Switzerland*, 14(7). <https://doi.org/10.3390/su14074157>
- Hendriks, S. (2022a). A New Ethical Framework for Assessing the Unique Challenges of Fetal Therapy Trials. *American Journal of Bioethics AJOB*, 22(3), 45–61. <https://doi.org/10.1080/15265161.2020.1867932>
- Hendriks, S. (2022b). A new ethical framework to determine acceptable risks in fetal therapy trials. *Prenatal Diagnosis*, 42(8), 962–969. <https://doi.org/10.1002/pd.6163>
- Hersey, A. E. (2024). Abortion policies at the bedside: Incorporating an ethical framework in the analysis and development of abortion legislation. *Journal of Medical Ethics*, 50(1), 2–5. <https://doi.org/10.1136/jme-2022-108412>
- Jha, D. (2025). A Conceptual Framework for Applying Ethical Principles of AI to Medical Practice. *Bioengineering*, 12(2). <https://doi.org/10.3390/bioengineering12020180>
- Larres, P. (2023). A Framework for Authentic Ethical Decision Making in the Face of Grand Challenges: A Lonerganian Gradation. *Journal of Business Ethics*, 182(2), 521–533. <https://doi.org/10.1007/s10551-021-04974-2>
- Lennon, R. P. (2022). A General Framework for Exploring Ethical and Legal Issues in Sports Medicine. *Journal of the American Board of Family Medicine*, 35(6), 1230–1238. <https://doi.org/10.3122/jabfm.2022.220208R1>
- McMahon, E. (2023). A framework for ethical research in international and comparative education. *Compare*, 53(1), 72–88. <https://doi.org/10.1080/03057925.2021.1876553>
- Pastor-Escuredo, D. (2022). An Ethical Framework for Artificial Intelligence and Sustainable Cities. *AI Switzerland*, 3(4), 961–974. <https://doi.org/10.3390/ai3040057>
- Prikshat, V. (2022). A multi-stakeholder ethical framework for AI-augmented HRM. *International Journal of Manpower*, 43(1), 226–250. <https://doi.org/10.1108/IJM-03-2021-0118>

- Rivron, N. C. (2023). An ethical framework for human embryology with embryo models. *Cell*, 186(17), 3548–3557. <https://doi.org/10.1016/j.cell.2023.07.028>
- Saleh, A. M. S. (2024). A Cyclic Framework for Ethical Implications of Artificial Intelligence in Autonomous Vehicles. *International Journal of Advanced Computer Science and Applications*, 15(3), 340–355. <https://doi.org/10.14569/IJACSA.2024.0150335>
- Saurabh, K. (2022). AI led ethical digital transformation: Framework, research and managerial implications. *Journal of Information Communication and Ethics in Society*, 20(2), 229–256. <https://doi.org/10.1108/JICES-02-2021-0020>
- Swindell, A. (2024). Against Artificial Education: Towards an Ethical Framework for Generative Artificial Intelligence (AI) Use in Education. *Online Learning Journal*, 28(2). <https://doi.org/10.24059/olj.v28i2.4438>
- Tan, C. (2023). An ethical framework adapted for infection prevention and control. *Infection Control and Hospital Epidemiology*, 44(12), 2044–2049. <https://doi.org/10.1017/ice.2023.121>
- Wang, J. (2024). A new framework for ethical artificial intelligence: Keeping HRD in the loop. *Human Resource Development International*, 27(3), 428–451. <https://doi.org/10.1080/13678868.2024.2346492>
- Yarborough, B. J. H. (2023). A Stakeholder-Informed Ethical Framework to Guide Implementation of Suicide Risk Prediction Models Derived from Electronic Health Records. *Archives of Suicide Research*, 27(2), 704–717. <https://doi.org/10.1080/13811118.2022.2064255>
- Zhu, J. (2022). An ethical analysis of clinical triage protocols and decision-making frameworks: What do the principles of justice, freedom, and a disability rights approach demand of us? *BMC Medical Ethics*, 23(1). <https://doi.org/10.1186/s12910-022-00749-0>
- Zlateva, P. (2024). A Conceptual Framework for Solving Ethical Issues in Generative Artificial Intelligence. *Frontiers in Artificial Intelligence and Applications*, 381(Query date: 2026-02-02 13:17:58), 110–119. <https://doi.org/10.3233/FAIA231182>

Copyright Holder :
© Taufik Hidayatullah et.al (2025).

First Publication Right :
© International Journal of Research in Counseling

This article is under:

